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Atmospheric 
Boundary Layer

•Turbulence

•Vertical structure / Wind shear

•Diurnal variability / Stability

•Spatial variability (heterogeneity) 

•Land-atmosphere interactions

•Flow – structure interactions/ Wake

Wind Resource
Assessment

Wind Resource Assessment: The Process
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Atmospheric Boundary Layer: Spatial Complexity

TerrainBuildings Forest
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FREE TROPOSPHERE

RESIDUAL 
LAYER

STABLE LAYER

CONVECTIVE  

(UNSTABLE) LAYER

Eddies/Plumes
STABLE LAYER

RESIDUAL 
LAYER

Entrainment

Atmospheric Boundary Layer: Temporal Complexity
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Understanding the ABL: Methods
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Observational/
Experimental

+
•“Truth”
• Code / model  
validation

-
• Height limitations
• Lack of spatial info
• Sensitivities 
• Expensive
• Not comprehensive

Understanding the ABL: Methods
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Numerical/
Computational

Theoretical/
Analytical

Observational/
Experimental

+
•“Truth”
• Code / model  
validation

-
• Height limitations
• Lack of spatial info
• Sensitivities 
• Expensive
• Not comprehensive

+
• Physics
• Modeling hotbed

-
• Simplified
• Often non-universal

+
• Complex flows 
• Repeatability
• Test models

-
• Infrastructure
• Accuracy / Validation
• Over-tweaking
• GIGO

Understanding the ABL: Methods



Bolund Workshop: Dec 4, 2009 15 / 40

CFD: Microscale ABL flow (DNS, LES, RANS)
DNS: Direct Numerical Simulation

LES: Large Eddy Simulation

RANS: Reynolds Averaged Navier-
Stokes Model
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CFD: Microscale ABL flow (DNS, LES, RANS)

Level of Detail: DNS>LES>>RANS
Computational cost: DNS>>>LES>>RANS

DNS: Direct Numerical Simulation

LES: Large Eddy Simulation

RANS: Reynolds Averaged Navier-
Stokes Model



Bolund Workshop: Dec 4, 2009 17 / 40

CFD: Microscale ABL flow (DNS, LES, RANS)

Direct Numerical 
Simulation (DNS)

Level of Detail: DNS>LES>>RANS
Computational cost: DNS>>>LES>>RANS

DNS: Direct Numerical Simulation

LES: Large Eddy Simulation

RANS: Reynolds Averaged Navier-
Stokes Model

Resolve 
all scales



Bolund Workshop: Dec 4, 2009 18 / 40

CFD: Microscale ABL flow (DNS, LES, RANS)

Direct Numerical 
Simulation (DNS)

Level of Detail: DNS>LES>>RANS
Computational cost: DNS>>>LES>>RANS

DNS: Direct Numerical Simulation

LES: Large Eddy Simulation

RANS: Reynolds Averaged Navier-
Stokes Model

Resolve 
all scales

Computationally impossible           
for realistic ABL flows



Bolund Workshop: Dec 4, 2009 19 / 40

CFD: Microscale ABL flow (DNS, LES, RANS)

Direct Numerical 
Simulation (DNS)

Level of Detail: DNS>LES>>RANS
Computational cost: DNS>>>LES>>RANS

DNS: Direct Numerical Simulation

LES: Large Eddy Simulation

RANS: Reynolds Averaged Navier-
Stokes Model

Resolve 
all scales

Computationally impossible           
for realistic ABL flows

Large Eddy Simulation         (LES)
•Predict instantaneous flow characteristics (+)
•A large portion of the turbulence spectrum is completely 
resolved (+)
•Represent complex flow regimes such as separation, wakes, 
stability transitions & stable boundary layers (+)
• Subgrid scale models can be universally applied (+)
• High computational cost: Parallel (-)
• Quality of results = ƒ(user) => GIGO (-)
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Large Eddy Simulation (LES)

Subgrid scale modeling

Incompressible Navier-Stokes, Re ~ 108

Filtering

∆
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LES: SGS Modeling

Static Smagorinsky Dynamic Model

Constant value Cs,∆
imposed everywhere

• Cs,∆ de te rmined dynamica lly from 
the  resolved sca les
• Cs,∆ is  spa tia lly averaged

Eddy Viscos ity (νt) type  models :

RESOLVED SGS
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Dynamic SGS model formulation
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SGS modeling: The Dynamic model

En
er

gy
 c

as
ca

de

Scale invariance
•Does not hold in near-
surface region

• Results in incorrect 
energy dissipation

Scale Dependence
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SGS modeling: Lagrangian averaging

Averaging of 
Cs,∆

Spatia l 
averaging

Removes  
spa tia l /loca l 

e ffects

Averaging 
over fluid 
pa thlines

New 
averaging 

method

Lagrangian 
Dynamic 

Model (LASI)

Sca le-
dependence

Lagrangian Dynamic 
scale-dependent 

SGS model (LASD)

• Phys ica lly motiva ted averaging
• Idea l for complex topography
• Point-wise  unique
• 3D loca l va riability prese rved
• Can handle  uns teady flows
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LES code

• Modular Fortran 90/95
• Parallel with FFTW solver

– Independently verified to be the most efficient parallel code on the 
NCAR supercomputing clusters

• Lagrangian scale-invariant (LASI) and scale-dependent  (LASD) 
SGS models

• Stability effects => Potential Temperature, Humidity 
– Surface boundary conditions : Flux or Temperature

• Derivatives: Pseudo-spectral (x,y), finite difference (z)
• Pressure forcing: Geostrophic wind (Ug,Vg)
• Terrain: Level set method, Immersed boundary method

Z
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LES of Unstable ABL

Moeng and Sullivan, 
JAS, 1994

Schmidt and Schumann, 
JFM, 1989

Good agreement:

“ Large structures”
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LES of Nocturnal Stable ABL

Beare et al.,
BLM, 2006

Beare et al.,
BLM, 2006

SGS models become 
important
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LES of Quasi-steady ABLs:  A review

Unstable ABL (Schmidt & Schumann, 1989; Nieuwstadt et al., 1991) 

• Suited for LES: Large-scale structures e.g. plumes,  thermals
• Energy spectra:  Over-dissipative SGS models

Stable ABL (Kosovic & Curry, 2000; Beare et al., 2006)

• Small-scale structures: Burden on SGS model
• Poor SGS models: Numerical instabilities
• Poor representation of energy spectra
• High resolution required with non-dynamic SGS models
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SGS model performance: Energy spectra
S

ta
bl

e 
U
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LASI LASD

Unstable (0.2 Km/s) and Stable (-0.02 Km/s) simulations:
Lagrangian Dynamic Scale-invariant and Scale-dependent models

Under-dissipative
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STABLE LAYER

RESIDUAL 
LAYER

Entrainment

LES of Diurnal ABL
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Evolution of the stable and unstable ABL

Evolution of the nocturnal low-level jet

Results: Diurnal ABL characteristics
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Sensible Heat Flux (resolved+SGS):   ′w ′θ +π3

Smagorinsky coefficient, Cs

Results: Diurnal ABL characteristics



Bolund Workshop: Dec 4, 2009 33 / 40

LES: Impact of Pressure forcing/BC
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LES: Impact of Pressure forcing/BC



Bolund Workshop: Dec 4, 2009 35 / 40

LES: Impact of Pressure forcing/BC
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LES: Representation of structures and topography

Methodology:
1. Describe surface using the level set 

method & Fluid-structure interaction 
represented through immersed 
boundary method

2. Define a band just outside the surface 

3. Pick a point define the surface normal 

4. Define a tangential velocity and apply a 
log law to obtain the sheer stress 

5. Extrapolate the stress field into the body 

6. Smooth the stress profile inside the 
body using iterative over-relaxation of 
the Laplace equation in stress, τ
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LES: Simulation setup for flow over terrain

Precursor run:
LES over flat 

terrain

LES over 
topographic 

features

LES Results

Inflow fields 
for LES

Buffer region at the end 
of domain:

Buffers outflow to inflow 
field for next time step

t = t + 1
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Data from Iwamura et al, 1991

LES study: Flow over a Gaussian Hill
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LES study: Flow over a steep real-world Hill

• Gaudergrat ridge, Switzerland 

• Dimensions: 1.5kmx1kmx250m

• Slopes of about 45 degrees

• Results to be compared with extensive 
observations, RANS and mesoscale models
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TOP VIEW

SIDE VIEW

LES study: Flow over a steep Alpine Hill
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LES study: Flow over a steep Alpine Hill
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LES study: Flow over a steep Alpine Hill
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Cross ridge flow

LES study: Flow over a steep Alpine Hill

• Cross ridge flows have been observed even when 
the mean wind direction is along the ridge*

• Also seen in mesoscale simulation of Gaudergradt
ridge (Courtesy: Rebecca Mott)

• In LES results, we observe cross-ridge flows with 
~20% strength of the predominant flow along the 
ridge.

* Lewis et al. (2008), QJRMS
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LES study: Flow over a steep real-world Hill
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Additional Slides
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Comparison with ARPS simulation (courtesy of Rebecca Mott): LES 
shows more spatial variability

LES study: Flow over a steep Alpine Hill
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Why the need?
• Standard wind assessment tools (WAsP / WindPro etc) not suited for 
complex flow situations:

• Use models meant for simple terrain
• Deficient in flow physics e.g. turbulence & atmospheric stability

• Wind assessment in complex terrain requires:
• Correct boundary conditions and forcing (pressure, flux) 
• Detailed understanding of atmospheric stability
• Appropriate modeling/representation of turbulence 
• Accurate representation of fluid-structure/topography interactions

Options:
 Mesosca le  models  => Not suited for micro-s iting

 Local/Microsca le  => Computa tional Fluid Dynamics

 Direct Numerica l S imula tion (DNS),  Large  Eddy Simula tion (LES), 
Reynolds  Averaged Navier S tokes  (RANS) modeling 

Computational Methods
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Computational Fluid Dynamics (CFD)

Governing PDEs

• Navier-Stokes equations
• Mass conservation
• Energy conservation
• Scalar transport

• • •

Algebraic 
equations 
on a grid

Numerical 
Integration

• Finite Difference
• Finite Volume
• Spectral Methods

• • •

• Explicit Methods
• Implicit Methods

• • •

Fluid flow problem

Fluid flow solution

B.C.+  
I.C.
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